Hipi Zhdripi i Matematikës/4

Nga testwiki
Versioni i datës 14 prill 2008 17:41 nga imported>Hipi Zhdripi
(ndrysh) ← Version më i vjetër | Rishikimi i fundit (ndrysh) | Version më i ri → (ndrysh)
Kërceni tek navigimi Kërceni tek kërkimi
PërmasatStampa:Në
      Njësia matëse e pasqyrimit apo përmasat e pasqyrimit është masa krahasuese për figurat e vizatuara apo të fotografuara.
      Vizatimet apo fotografitë janë pasqyrime të objekteve e figurave të cilat përftyrimet e tyre i zvogëlojnë apo i zmadhojnë. Gjatë kësaj përftyra dhe figura origjinale duhet të jenë të ngjashme. Përmasat e gjatësive dhe distancave duhet të jenë të njëjta.
      Nëse 𝑎 është gjatësia e një lakore në figurën origjinale dhe 𝑎 gjatësia e asaj lakore në pyftyrimin e asaj figure, atëherë përmasa e pasqyrimit do të jetë thyesa:
      aa gjegjësisht: 𝑎:a.
      Kështu për shembull në hartë është paraqitur përmasa 1:200 000, atëherë kjo do të thotë se 1 cm në hartë i përgjigjet 200 000 cm (=2 km) në natyrë. Apo një gurë i zallit është fotografuar me përmasat 50:1, atëherë ajo që shohim është pesëdhjetë herë më e madhe se guri në natyrë.
Intervali i mbyllurStampa:Në
      Segment apo interval i mbyllur quhet një drejtëz të cilës i takojnë dy pikat e skajshme të vetë drejtëzës.
      [a;b]={x|axb}, është interval i mbyllur, ndërsa:
      ]a;b[={x|a<x<b} është interval i hapur
      Shprehja "e mbyllur" apo "i mbyllur" përdoret edhe në raste tjera kur dëshirohet të tregohet saktësia e sipërfaqes. Kështu një sipërfaqe konsiderohet e mbyllur kur asaj i takojnë edhe pikat e skajshme të kufirit (ramit). Kështu kur flitet për sipërfaqen e brendshme shpesh përdoret edhe shprehja sipërfaqja e hapur.
AbsoluteStampa:Në
      Fjala absolute vije nga latinishtja dhe në matematikë përdoret në disa drejtime po më të njëjtin kuptim. Kështu bie të dëgjohet të flitet për :
  • Vlerën absolute apo për vlerën e plotë
  • Termi absolut në polinomet si p.sh koeficienti 𝑎0 në polinomin 𝑎nxn+...+a2x2+a1x+a0.
  • Gabimi absolut gjatë matjeve. Kështu nëse është matur vlera 𝑎 me një gabim (saktësi të matjes) a, atëherë a quhet gabimi absolut dhe shprehja aa quhet gabim relativ i matjes.
  • Gjasa absolute te Llogaritja e gjasave. Nëse gjatë llogaritjes së gjasave tek rastet e lira të përsëritura është vërejtur rasti/ramja e përsëritur 𝑛-herë për saktësisht 𝑘 -herë prova, atëherë 𝑘 -ja quhet gjasa absolute ndërsa kn gjasa relative e rastit/ramjes.
DistancaStampa:Në
Skeda:Pikadrejtëza.PNG
Fig 1. Projektimi i pikës në dre.
Skeda:DrejtëzatII.PNG
Fig 2. Drejtëzat në paralele
Skeda:DrejtëzatX.PNG
Fig 3. Drejtëzat në hapësirë
      Largësia, Afrimi
      Distanca është afërsia në mes të dy pikave P,Q në një rrafsh apo në hapësirë. Vija lidhëse më e shkurt nga PQ është distanca, afërsia PQ.
  • Afërsia e pikës nga drejtëza.
      Si afërsi e pikës P nga drejtëza g (në rrafsh apo hapësirë) merret gjatësia nga P deri te "hija" (projektimi, pasqyrimi) e saj në drejtëz g. Shih figurën 1.
  • Afërsia në mes dy drejtëzave paralele.
      Si afërsi e drejtëzave paralele g dhe h (në rrafsh apo hapësirë) merret gjatësia nga një pikë e marrë nga drejtëza g, pika P deri te drejtëza h. Shih figurën 2.
  • Afërsia në mes dy drejtëzave që prehen.
      Afërsia në mes dy drejtëzave që prehen në hapësirë është e barabartë me gjatësinë e vijës e cila ndodhet pingul në të dy drejtëzat. Shih figurën 3.
  • Afërsia në mes dy drejtëzave paralele.
      Afërsia e pikës nga një rrafsh (plan gjeometrikë) në hapësirë është gjatësia nga pika P deri në hijen e plotë (projektimin, pasqyrimin 90 shkallë) në rrafsh. Shih figurën 4.
  • Afërsia e drejtëzës nga rrafshi paralel me të.
      Afërsia e drejtëzës 𝐠 nga rrafshi (plan gjeometrikë) paralel me të ε në hapësirë është gjatësia në mes dy drejtëzave paralele në hapësirë. Po ashtu kjo vlen edhe për dy rrafshe paralele ε dhe η, ku për të gjet afërsinë e tyre matet gjatësia në mes të dy drejtëzave të tërhequra në rrafshin përkatës.Shih figurën 5.
Skeda:Pikarrafshi.PNG Skeda:RrafshetII.PNG
Fig 4. Pika dhe rrafshi Fig 5. Rrafëshet paralele


      Afërsia e pikave, drejtëzave dhe rrafsheve mund të shprehet në algjebër pasi që të vizatimi të jetë bartur në një sistemin kordinativ.


Stampa:Faqe